

Bacteria TMDL in the Piney Run Watershed

Final Public Meeting March 18, 2004

Presentation Overview

- 1. Overview of Virginia's TMDL Program
- 2. Applicable Water Quality Standard
- 3. Piney Run Impairment
- 4. Bacteria Source Tracking (BST) Results
- 5. Bacteria Source Assessment
- 6. TMDL Development Approach
- 7. TMDL and Allocations

What is a TMDL?

- TMDL stands for Total Maximum Daily Load
- A TMDL is a pollution budget
- A TMDL is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards
- A TMDL includes an **allocation** of that maximum amount to the pollutant's sources

TMDL Equation

A TMDL is summarized as:

TMDL = Sum of WLA + Sum of LA + MOS

Where:

- TMDL = Total Maximum Daily Load
- WLA = Waste Load Allocation (point sources)
- LA = Load Allocation (nonpoint sources)
- -MOS = Margin of Safety

How is a TMDL developed?

- Identify all sources of a given pollutant within the watershed
- Calculate the amount of pollutant entering the stream from each source
- Calculate the pollutant reductions needed, by source, to attain water quality standards
- Allocate the allowable loading to each source and include a margin of safety

When are TMDLs needed?

- State and federal law require TMDLs to be developed for **impaired** waters
- Impaired waters do not meet applicable water quality standards (WQS)
- Waters that do not meet WQS do not support their designated use(s)
- For bacteria impairments, the designated use that is affected is the **recreational use**

Regulatory Basis of TMDLs

- TMDLs required by Federal and State law
 - 1972 Clean Water Act (CWA), Section 303(d)
 - 1997 Water Quality Monitoring, Information and Restoration Act (WQMIRA)
- 1998 lawsuit filed by the American Canoe Association and the American Littoral Society against EPA for failure to comply with CWA §303(d) in Virginia
- 1999 Consent Decree requiring EPA and Virginia to complete 636 TMDLs by 2010

Regulatory Requirements

- Both state and federal law require:
 - Establishment of water quality standards
 - Monitoring of water quality in surface waters
 - Assessment of water quality in surface waters
 - Listing of waters that do not meet water quality standards (impaired waters)
 - Development of TMDLs for impaired waters
- State law requires, and federal law recommends:
 - Development of a TMDL Implementation Plan

Roles of DEQ and DCR in TMDL and IP Development

- DEQ is the lead for TMDL development, including submittal to EPA
- DCR is the lead for TMDL Implementation Plan (IP) development
- DEQ is responsible for ensuring public participation in the TMDL program

Presentation Overview

- 1. Overview of Virginia's TMDL Program
- 2. Applicable Water Quality Standard
- 3. Piney Run Impairment
- 4. Bacteria Source Tracking (BST) Results
- 5. Bacteria Source Assessment
- 6. TMDL Development Approach
- 7. TMDL and Allocations

Water Quality Standards

- Water Quality Standards (WQS):
 - set by states and approved by EPA
 - set numeric and narrative limits on pollutants
 - consist of designated use(s) and water quality
 criteria
- Purpose of WQS:
 - protection of 5 designated uses (aquatic life, fish consumption, shellfish, recreation, drinking water)
 - restoration of state waters to meet criteria

Applicable Designated Use

- All surface waters in Virginia are currently designated for **primary contact recreation** (e.g. swimming)
- In March 2003, a **secondary contact recreation** use designation (e.g. wading, fishing) was added to the WQS
 - Five times the primary contact criteria
 - Individual waters will only be considered for reclassification after TMDL implementation has been tried using reasonable BMPs
 - Approved by EPA and effective Feb. 12, 2004

Pollutant of Concern

- Fecal bacteria are found in the digestive tract of humans and warm blooded animals
- Fecal bacteria are an indicator of the potential presence of pathogens in waterbodies
- The presence of fecal bacteria in water samples is a strong indicator of recent sewage or animal waste contamination

Sampling for Bacteria

- Stream samples are collected in sterile 125 mL sample bottles
- Samples are filtered to deposit bacteria on filters
- Filters are incubated, allowing individual bacteria to grow into visible colonies
- Colonies are counted to give a concentration of colony forming units (cfu) per 100 mL

Old Criteria

- Indicator species: fecal coliform
 - used in listing Piney Run
- Instantaneous max: 1,000 cfu/100 mL
- Applicable for data sets with 1 or fewer samples in 30 days

- Geometric mean:
 200 cfu/100 mL
- Applicable for data sets with 2 or more samples in 30 days

New Criteria

- Indicator species for freshwater: *E. coli*
 - change in indicator species from fecal coliform to *E. coli* (fresh water)
 - E. coli bacteria are a subset of fecal coliform bacteria and correlate better with swimming-associated illness
- Instantaneous max: 235 cfu/100 mL
- Applicable for all data sets; no samples may exceed the maximum
- Geometric mean: 126 cfu/100 mL
- Applicable for data sets with 2 or more samples in a calendar month

Comparison of the Old Fecal Coliform and New *E. coli* Criteria

Old FC (cfu/100mL)	Interim FC (cfu/100mL)	FC translated to EC* (cfu/100mL)	New EC (cfu/100mL)
200	200	129	126
	400	243	235
1,000		565	

^{*} Based on regression model between 493 dual data points

Note: FC = Fecal Coliform, EC = *Escherichia Coli*

Presentation Overview

- 1. Overview of Virginia's TMDL Program
- 2. Applicable Water Quality Standard
- 3. Piney Run Impairment
- 4. Bacteria Source Tracking (BST) Results
- 5. Bacteria Source Assessment
- 6. TMDL Development Approach
- 7. TMDL and Allocations

Impairment in the Piney Run Watershed

WATER	CAUSE	STREAM	LENGTH	YEARS
BODY		NAME	(Miles)	LISTED
VAN-A01R	Bacteria	Piney Run (from mouth of	3.52	1998, 2002
		unnamed lake to confluence		
		with Potomac River)		

Map of the Piney Run Watershed

- DEQ monitoring station:
 1APIA001.80
- USGS flow gage: 01636690
- 2002 305(b) results: 5 of 22 samples (23%) exceeding 1000 cfu/100mL
- 2000 305(b) results: 5 of 20 (25%)
- 1998 305(b) results: 5 of 19 (26%)

Fecal Coliform Data at 1APIA001.80

Seasonal Distribution of Fecal Coliform Data at 1APIA001.80

Presentation Overview

- 1. Overview of Virginia's TMDL Program
- 2. Applicable Water Quality Standard
- 3. Piney Run Impairment
- 4. Bacteria Source Tracking (BST) Results
- 5. Bacteria Source Assessment
- 6. TMDL Development Approach
- 7. TMDL and Allocations

Bacteria Source Tracking on Piney Run

- Monthly sampling at Station 1APIA001.80 from August 2002 to August 2003
 - Simultaneous enumeration of E. coli and Fecal
 Coliform in ambient water samples
 - Completion of the BST Study finalized transition from Fecal Coliform to *E. coli* standard
- Antibiotic Resistance Analysis (ARA)
 - Collection of samples from known sources
 - Analysis of known sources to build source library
 - Identification of unknown sources by comparing ARA results to the source library

BST Results for 1APIA001.80

BST Results for 1APIA001.80

	Fecal		BST Distribution			
Sample Date	Coliform (cfu)	E. coli (cfu)	W ildlife	Human	Livestock	Pet
08/27/2002	110	110	8%	4%	63%	25%
09/30/2002	280	200	8%	25%	54%	13%
10/17/2002	960	960	21%	0%	50%	29%
11/13/2002	190	190	32%	5%	49%	14%
12/16/2002	100	100	8%	0%	25%	67%
02/25/2003	64	64	29%	13%	50%	8%
03/04/2003	64	64	13%	0%	54%	33%
04/15/2003	90	90	50%	21%	4 %	25%
05/12/2003	120	120	25%	4%	67%	4%
06/25/2003	120	120	75%	0%	0%	25%
07/22/2003	460	460	41%	4 %	38%	17%
08/18/2003	410	410	67%	0%	33%	0%
	Average		31%	6%	41%	22%
	Standard Deviation		23%	9%	22%	18%

BST Results for Piney Run

Presentation Overview

- 1. Overview of Virginia's TMDL Program
- 2. Applicable Water Quality Standard
- 3. Piney Run Impairment
- 4. Bacteria Source Tracking (BST) Results
- 5. Bacteria Source Assessment
- 6. TMDL Development Approach
- 7. TMDL and Allocations

Land Use in the Piney Run Watershed

MRLC	Piney	Run	
Land Use	Acres	Percent	
Cropland	48	0.5%	
Pasture	2,616	26.9%	
Barren or Mining	0	0.0%	
Forest	6,908	71.0%	
Transitional	1	0.0%	
Urban	20	0.2%	
Water	36	0.4%	
Wetlands	104	1.1%	
Total	9,731	100.0%	

Potential Sources of Bacteria in Piney Run

- Humans/Pets
 - Straight Pipes
 - Septic Systems
 - Biosolids
 - Permitted Point Sources
 - Pets

- Livestock
 - Direct Deposit to Land and Streams
 - Land Application
- Wildlife
 - Direct Deposit to Land and Streams

Potential Human and Pet Sources

Estimated Point Sources

VPDES Permit Number	Facility Name	Receiving Stream	Watershed ID	Design Flow (gal/day)	Effluent Limit (cfu/100 ml)	Wasteload Allocation
VAG406106	Business	Piney Run	VAN-A01R	1,000	126	1.74 x 10 ⁹
VAG406249	Business	Piney Run, UT	VAN-A01R	1,000	126	1.74 x 10 ⁹
			Existing WLA	2,000	126	3.48 x 10 ⁹

Estimated Human and Pet Sources

Source	Population	Waste Production Rate	Waste Fecal Coliform Density	Total Est. Annual Fecal Production
Straight Pipes 9 households x 2.6 people/household = 2.00×10^9 cfu/day/person * x 365 days/yr = 7.30 x 10^{11} cfu/yr/person 23.4 people		1.71 x 10 ¹³ cfu/yr		
Failing Septic Systems	44 systems x 2.6 people/system = 114.4 people	75 gal/day/person x 37.85412 100mL/gal x 365 days/yr = 1.04 x 10 ⁶ 100mL/yr/person **	1.04 x 10 ⁶ cfu/100mL ***	1.23 x 10 ¹⁴ cfu/yr
			Total Human	1.35 x 10 ¹⁴ cfu/yr
Dogs	411 dogs	450 g/day/dog *** x 365 days = 1.64 x 10 ⁵ g/yr/dog	4.8 x 10 ⁵ cfu/g	3.24 x 10 ¹³ cfu/yr
Cats	508 cats	19.4 g/day/cat *** x 365 days = 7.08 x 10 ³ g/yr/cat	9 cfu/g ***	3.24 x 10 ⁷ cfu/yr
			Total Pets	3.24 x 10 ¹³ cfu/yr

^{*} Metcalf and Eddy, 1991

^{**} Geldreich, 1978 (A conversion factor of 37.85412 was used to convert gallons to 100mL)

^{***} MapTech, 2002 (Catoctin Creek TMDL Report)

Potential Livestock Sources

Estimated Livestock Sources

Source	Population		Waste Production	Fecal	Total Fecal Production***
	Loudoun County	Piney Run	Rate** (lbs/animal/day)	Density** (cfu/g)	(cfu/yr)
Cattle and Calves	32,650	500	46.4	1.01 x 10 ⁵	3.88 x 10 ¹⁴
Beef Cows	16,667	225	46.4	1.01 x 10 ⁵	1.75 x 10 ¹⁴
Milk Cows	504	0	120.4	2.58 x 10 ⁵	0
Hogs and Pigs	869	0	11.3	4.00 x 10 ⁵	0
Sheep and Lambs	1,923	30	2.4	4.30 x 10 ⁴	5.13 x 10 ¹¹
Layers	2,454	50	1.40 x 10 ⁸ (cfu/animal/day) ****		2.56 x 10 ¹²
Broilers	0	0	1.40 x 10 ⁸ (cfu/animal/day) ****		0
Horses	15,800 *	350	51.0	9.40 x 10 ⁴	2.78 x 10 ¹⁴
				Total Livestock	8.44 x 10 ¹⁴

^{* 2001} Virginia Equine Report

^{**} MapTech, 2002

^{***} A conversion factor of 453.6 was used to convert pounds to grams

^{****} ASAE, 1998

Potential Wildlife Sources

Estimated Wildlife Sources

Source	Population Density **	Habitat	Watershed Population (animals)	Waste Production Rate ** (g/animal/day)	Fecal Density ** (cfu/g)	Fecal Coliform Production (cfu/yr)
Deer	0.168 an/ac	9,592 ac	1,611	772	380,000	1.73 x 10 ¹⁴
Raccoon	0.070 an/ac	1,698 ac	119	450	2,100,000	4.10 x 10 ¹³
Beaver	9.600 an/mi	25.8 mi	132	200	1,000	9.60 x 10 ⁹
Turkey	0.010 an/ac	6,908 ac	69	320	1,332	1.07 x 10 ¹⁰
Goose	0.020 an/ac	1,698 ac	66	225	250,000	6.97 x 10 ¹¹
Duck	0.008 an/ac	193 ac	2	150	3,500	2.96 x 10 ⁸
					Total Wildlife	2.14 x 10 ¹⁴

^{**} MapTech, 2002

Bacteria Production Results for Piney Run

Presentation Overview

- 1. Overview of Virginia's TMDL Program
- 2. Applicable Water Quality Standard
- 3. Piney Run Impairment
- 4. Bacteria Source Tracking (BST) Results
- 5. Bacteria Source Assessment
- 6. TMDL Development Approach
- 7. TMDL and Allocations

What is Load Duration Analysis?

- Less complex spreadsheet model for TMDL development
- Approach proposed for bacteria TMDLs in small watersheds
- Model requires
 - stream flow data
 - ambient water quality data, and
 - bacteria source tracking data (for pollutant source identification and loading allocations)

Development of Flow Duration Curve for Piney Run

- Piney Run has a USGS flow gaging station that was established in 2001
- In order to include the time period that led to the listings (1/1/1996 to 12/31/2000 for the most recent assessment), the flow record must be extended

Reference Stream Selection

- Flows were correlated with Catoctin, Goose and Passage Creeks
- The period from 1988 to present was used
- Piney Run flows correlated best with Catoctin Creek (0.9318)
- Flow regression equations were then used to generate continuous flow records (1988-03)

Piney Run Flow Regression

Piney Run Flow Duration Curve

Load Duration Curve

- Represents the maximum amount of a pollutant allowed at each flow level
- Obtained by multiplying the flow duration curve by the water quality criterion
- At higher flows, a stream will have more assimilative capacity
- At lower flows, it will have less assimilative capacity

Piney Run Load Duration Curve

TMDL Required Reduction

- The TMDL must ensure water quality is protected during times when stream is most vulnerable
- The stream is assumed to be most vulnerable when the highest exceedance occurs
- The TMDL equation is then calculated using the maximum observed exceedance and average flow conditions (10.49 cfs)

Piney Run Observed Loads

Piney Run TMDL

(94% Reduction)

TMDL Reduction Required

WLA*	LA	MOS	TMDL
3.48 x 10 ⁹	2.20 x 10 ¹³	(implicit)	2.20 x 10 ¹³

Load Category (annual average)	Allowable Loads (cfu/yr)	Average Annual EC Load (cfu/yr)	Required Reduction
Waste Load Allocation (WLA)	3.48 x 10 ⁹	3.48 x 10 ⁹	0%
Load Allocation (LA)	2.20 x 10 ¹³	3.58 x 10 ¹⁴	94%
MOS	0 (implicit)		
TMDL	2.20 x 10 ¹³	3.58 x 10 ¹⁴	94%

Development of TMDL Allocations

- Assume an implicit margin of safety due to conservative assumptions
- Subtract point source loads from the TMDL load to obtain the non-point source load
- Use results of BST study to allocate the non-point source loads among sources (human, pets, livestock, wildlife)

Development of TMDL Allocations

	Total (cfu/yr)	Human: 6% (cfu/yr)	Pet: 22% (cfu/yr)	Livestock: 41% (cfu/yr)	Wildlife: 31% (cfu/yr)
Average Annual Load	3.58 x 10 ¹⁴	2.27 x 10 ¹³	7.75 x 10 ¹³	1.45 x 10 ¹⁴	1.12 x 10 ¹⁴
Reduction	94%	94%	94%	94%	94%
Allowable Annual Load	2.20 x 10 ¹³	1.39 x 10 ¹²	4.77 x 10 ¹²	8.94 x 10 ¹²	6.92 x 10 ¹²

Bacteria TMDL for the Piney Run Watershed

- First public meeting:
 - Thursday, December 18
 - Discussed proposed approach
- Second and final public meeting:
 - Thursday, March 18
 - Draft report for comment
- 30 day public comment ends April 16
- TMDL submitted to EPA by May 1, 2004

Bacteria TMDL for the Piney Run Watershed

Kate Bennett

Regional TMDL Coordinator

Northern Virginia Regional Office

VA Department of Environmental Quality

DEQ

13901 Crown Ct.

Woodbridge, VA 22193

Phone: (703) 583-3896

Fax: (703) 583-3841

E-mail: kebennett@deq.state.va.us